
UI
Development

Town Hall Presentation - 12/2020

Part 2

What We Know So Far

DataHub UI is a...

● Mono-repository using Yarn workspaces
(https://classic.yarnpkg.com/en/docs/workspaces/)

● Which consists of an Ember application (https://guides.emberjs.com/release/)
● And various Ember addons (https://cli.emberjs.com/release/writing-addons/) and

npm packages
● Written in TypeScript (https://www.typescriptlang.org/) for Ember

(https://github.com/typed-ember/ember-cli-typescript)

An Overview

https://classic.yarnpkg.com/en/docs/workspaces/
https://guides.emberjs.com/release/
https://cli.emberjs.com/release/writing-addons/
https://www.typescriptlang.org/
https://github.com/typed-ember/ember-cli-typescript

What We Know So Far

DataHub UI code consists of

● packages/data-portal => a Ember application
● @datahub/** => addons that are consumed by the Ember application representing

parts of the application
● @nacho-ui/** => addons that contain general UI components not specific to

DataHub features

An Overview

Topics for This Discussion

Pillars of
DataHub UI

Roadmap &
Next StepsData Flow in

DataHub UI

Configuration
Based UI

Pillars of DataHub UI

Da
ta

 E
nt

iti
es

De
pe

nd
en

cy

In
je

ct
io

n

Te
m

pl
at

e-
iz

at
io

n

Re
nd

er
 P

ro
pe

rt
ie

s

Re
la

tio
ns

hi
psWe’ll go more in

depth about these
today :)

Data Flow in DataHub UI

API
Response

Data Flow in DataHub UI

API Call

API
Response

Metadata
Model

Data Flow in DataHub UI

API Call

API
Response

Metadata
Model

UI Data Entity

Entities
If it’s an entity modeled in our metadata, it should be an entity on the UI.

Represented as a JS/TS
class in the UI

Abstraction over an object
that is the actual entity
returned from the API

Contains information about
entity behavior in UI
rendering/data fetching

Entities
Why do we have this?

● We need to understand more about an entity than just what is returned from the
API, including behavior of the entity on the UI and how it should interact with other
entities

● Centralizes definitions of the above as well as being an instance of a store for data
management

● Abstracts concerns about API response object and allows the view based
components to focus more on how to interact with the entity itself

Entities
API calls and data models are both
located in @datahub/data-models
under the api and entity folders.

API response “metadata-types” are
generated from PDL models and
found in @datahub/metadata-types
under types/codegen

Data Flow in DataHub UI

Metadata
Model

UI Data Entity
Property
Accessor

Abstracted Value
from Metadata

Object
UI

Component

Data Flow in DataHub UI

UI
Component

Entity-specific components
that are specialized for one
particular kind of entity

Components that generically
relate to a feature or idea
that are common among
two or more entities

Configuration Based UI
What is it?

● Generalized UI templates for commonly used components, such as tables, search
results, and even entire entity pages

● Which components to render and how they behave is based on a JS/TS object
resembling a JSON object

● This object is attached to an entity class so that it can be used where the entity is
used and read when relevant

Configuration Based UI
Why do we have it?

● Allows a familiar UI developer to easily spin up basic components for a new entity
or new feature/aspect on an existing entity without having to rebuild similar UI
over and over

● Allows a developer who is not familiar with UI (such as a backend dev) to be able
to make changes and edits to a set of UI behavior without needing in depth
knowledge on how the UI runs (if you can edit JSON, you can edit UI)

● Current methodology is not perfect, it’s a work in progress

Configuration Based UI
How it works, an easy example

tableProps = {
 headers: [‘Name’, ‘Type’],
 picture: ‘pikachu’,
 propertyNames: [‘displayName’, ‘type’]
};

objects = [
 {
 displayName: ‘Pikachu’,
 id: ‘pikachu’,
 type: ‘electric’
 },
 {
 displayName: ‘Charmander’,
 id: ‘charmander’,
 type: ‘fire’
 }
];

Name Type

Pikachu electric

Charmander fire

Configuration Based UI
How it works, an easy example

tableProps = {
 headers: [‘Pokemon Name’, ‘Type’],
 picture: ‘pikachu’,
 propertyNames: [‘id’, ‘type’]
};

objects = [
 {
 displayName: ‘Pikachu’,
 id: ‘pikachu’,
 type: ‘electric’
 },
 {
 displayName: ‘Charmander’,
 id: ‘charmander’,
 type: ‘fire’
 }
];

Pokemon Name Type

pikachu electric

charmander fire

Configuration Based UI
How it works, an easy example

tableProps = {
 headers: [‘Name’, ‘Type’],
 picture: ‘eevee’,
 propertyNames: [‘displayName’, ‘type’]
};

objects = [
 {
 displayName: ‘Pikachu’,
 id: ‘pikachu’,
 type: ‘electric’
 },
 {
 displayName: ‘Charmander’,
 id: ‘charmander’,
 type: ‘fire’
 }
];

Name Type

Pikachu electric

Charmander fire

Configuration Based UI
How it works, a real example

{
 apiEntityName,
 search: {
 placeholder: 'Search for datasets...',
 attributes: fields,
 secondaryActionComponents: [],
 customFooterComponents: [{ name: 'social/containers/social-metadata' }],
 isEnabled: true
 },
 userEntityOwnership: { … },
 browse: { showHierarchySearch: false },
 entityPage: { … }
 };

Configuration Based UI
How it works, a real example
const fields: Array<ISearchEntityRenderProps> = [
 {
 showInAutoCompletion: true,
 fieldName: 'dataorigin',
 showInResultsPreview: true,
 displayName: 'Data Origin',
 showInFacets: true,
 desc: 'The data origin of the dataset',
 example: 'dataorigin:PROD',
 ...
 },
 {
 showInAutoCompletion: true,
 fieldName: 'health',
 showInResultsPreview: true,
 displayName: 'Health',
 showInFacets: false
 ...
 },
];

Configuration Based UI
How it works, a real example
{
 search: { … },
 entityPage: {
 route: 'datasets.dataset',
 tabProperties: [],
 defaultTab: DatasetTab.Schema,
 attributePlaceholder: '-',
 apiRouteName: 'datasets',
 pageComponent: {
 name: 'datasets/dataset-page'
 },
 customHeaderComponents: [
 {
 name: 'dynamic-components/entity/field',
 options: { className: 'dataset-header__description', fieldName: 'description' }
 },
 { name: 'datasets/containers/dataset-owner-list' }
]
 }
 };

Roadmap & Goals

How we want to build more engagement with our UI from developers:

● GraphQL
○ Part of data models sounds like a poor person’s GraphQL, that’s because it

probably is
○ More standardized way to interact with our API and have similar abstractions

● Framework agnostic UI modeling and render props
○ Ember is too hard, let’s make life easier. More plain old JS == easier to work

with for non-Ember and/or non-UI experts
● React one day?

○ More popular, easier to pick up

What we want to bring back to the future

Thanks for attending!

For more information, we are working on adding documentation and guides to
provide additional clarity and insight into the UI work:

https://github.com/linkedin/datahub/tree/master/datahub-web

https://github.com/linkedin/datahub/tree/master/datahub-web

